skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khan, Md_Rezaul Karim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Road extraction is a sub-domain of remote sensing applications; it is a subject of extensive and ongoing research. The procedure of automatically extracting roads from satellite imagery encounters significant challenges due to the multi-scale and diverse structures of roads; improvement in this field is needed. Convolutional neural networks (CNNs), especially the DeepLab series known for its proficiency in semantic segmentation due to its efficiency in interpreting multi-scale objects’ features, address some of these challenges caused by the varying nature of roads. The present work proposes the utilization of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP) module. This modification enhances the extraction of complex road structures from satellite images. This study hypothesizes that the integration of DenseDDSSPP with a CNN backbone network and a Squeeze-and-Excitation block will generate an efficient dense feature map by focusing on relevant features, leading to more precise and accurate road extraction from remote sensing images. The Results Section presents a comparison of our model’s performance against state-of-the-art models, demonstrating better results that highlight the effectiveness and success of the proposed approach. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026